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Clustering arises in various contexts

Clustering individuals w.r.t. features

Clustering features

Clustering graphs
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Objectives

Topic of the talk

Introduce several hidden partition problems.

fresh view on some classical clustering algorithms.

Some recovery error bounds for Gaussian Mixtures

Main Message

K-means and its relaxations (and corrections) are versatile and near optimal tools.
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Mixture of Gaussian vectors [Pearson('1895)]

Partition

G∗ = {G∗1, . . . , G∗K} of [n]

Mixture of Gaussian variables (conditional)

X1, . . . , Xn ∈ Rp are independent with Xa ∼ N (θk,Σk) if a ∈ G∗k

The observations are gathered in X =

 X1

. . .
Xn

 ∈ Rn×p

Objective : recovering G∗ from X (θ and Σ are unknown but K is known)

Clustering Problem 6= Parameter Estimation
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Mixture of Gaussians

Membership Matrix A ∈ Rn×K de�ned by Aak = 1a∈Gk = Π


1 0 0

. . .
0 1 0

. . .
0 0 1

.

Mean component Matrix : Θ =

 θ1
. . .
θK

.
Population Version : E[X] = AΘ

X = AΘ + E = �Signal� + �Noise�
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Stochastic Block Model (SBM)

Holland et al.('83), Abbe('17),. . . ,
X = adjacency matrix of an undirected graph ∈ {0, 1}n×n.

Let Q ∈ [0, 1]K×Ksym

(conditional) SBM

The graph is generated by a SBM with partition G∗ and matrix Q if Xab with a < b
are independent and

P[Xab = 1] = Qjk for any a ∈ G∗j and b ∈ G∗k ,

Objective : recovering G∗ from X (Q is unknown.)

Population Version : E[X] = AQAT −Diag(AQAT ) ≈ A[QAT ]
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Model in mind

Algorithms do not depend on a particular model. To provide some intuition :

Mixture of Gaussian variables (conditional)

X1, . . . , Xn ∈ Rp are independent with Xa ∼ N (θk,Σk) if a ∈ G∗k

Signal + Noise decomposition

X = AΘ + E
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Maximum Likelihood Estimation

For the Gaussian Model, MLE

ĜMLE ∈ arg min
G

K∑
k=1

min
Σk∈S

+
p

min
θk∈Rp

∑
a∈Gk

(
(Xi − θk)TΣ−1

k (Xi − θk) + log(det(Σk))
)

Two Di�culties :

Computational : (In principle) requires to scan over the space of partitions
(size of order Kn/K!)

Statistical : Estimation of Σk unstable for large p.

 For the latter, assume in the criterion that Σk = σ2Ip

Ĝ ∈ arg min
G

K∑
k=1

min
θk∈Rp

∑
a∈Gk

‖Xa − θk‖22
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K-means criterion

Ĝ ∈ arg minG Crit(X, G) where

Crit(X, G) =
K∑
k=1

∑
a∈Gk

‖Xa −XGk‖
2 =

1

2

K∑
k=1

1

|Gk|
∑

a,b∈Gk

‖Xa −Xb‖2 ,

where XGk = 1
|Gk|

∑
a∈Gk Xa

We did not address the computational issues

There can be many local optima

In worst-case solving K-means is NP -hard (Mahajan et al.('09))

(1 + ε)-approximation is also NP -hard :
Finding Ĝ s.t. Crit(X, Ĝ) ≤ (1 + ε) minG Crit(X, G)

8-approximation is possible in polynomial time (Kanungo et al.('04))
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Encoding partition learning as a Matrix Problem.

Membership Matrix A ∈ {0, 1}n×K de�ned by Aak = 1a∈Gk (or equivalently
function k : [n] 7→ [K])
is NOT Identi�able. Why ?

A more suitable object : The n× n partnership matrix
B∗ = A(ATA)−1AT

B∗ab =

{
1
|G∗
k
| if a and b belong to the same G∗k

0 else

Invariant with respect to the group labeling.

Properties :
tr[B∗] = K.

B∗ = ΠT


1
|G∗

1 |
J|G∗

1 | 0 0

0 1
|G∗

2 |
J|G∗

2 | 0

0 0 1
|G∗

3 |
J|G∗

3 |

Π
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Rewriting K-means as a matrix estimation problem

Crit(X, G) =
1

2

K∑
k=1

1

|Gk|
∑

a,b∈Gk

‖Xa −Xb‖2

= −
∑
k

∑
a,b ∈Gk

〈Xa, Xb〉
1

|Gk|
+

n∑
a=1

‖Xa‖22

= −〈XXT ,B〉+ . . .

K-means : linear minimization problem over the space of partnership matrices

Ĝ = arg min
B
〈−XXT ,B〉
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One caveat of K-means criterion

https://en.wikipedia.org/wiki/K-means_clustering

Bias of K-means :

Tends to split groups with large variance and favors small groups
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Lloyd's algorithm Lloyd('82)

K-means as a least-square problem :

Ĝ ∈ arg min
G

K∑
k=1

min
θk∈Rp

∑
a∈Gk

‖Xa − θk‖22

Alternate Minimization between estimation of the centroids and of the partition

Two steps :

1 Compute the centroids

2 Update the partition

Caveats There can be many local optima. (depends on the initialization)

Many variants depend on the initialization :

Proposition (Arthur and Vassilvitskki('07))

K-means++ achieves a log(K) approximation of K-means criterion (in worst case).
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Ĝ ∈ arg min
G

K∑
k=1

min
θk∈Rp

∑
a∈Gk

‖Xa − θk‖22

Alternate Minimization between estimation of the centroids and of the partition

Two steps :

1 Compute the centroids

2 Update the partition

Caveats There can be many local optima. (depends on the initialization)

Many variants depend on the initialization :

Proposition (Arthur and Vassilvitskki('07))

K-means++ achieves a log(K) approximation of K-means criterion (in worst case).

16/36



Lloyd's algorithm Lloyd('82)

K-means as a least-square problem :

Ĝ ∈ arg min
G

K∑
k=1

min
θk∈Rp

∑
a∈Gk

‖Xa − θk‖22

Alternate Minimization between estimation of the centroids and of the partition

Two steps :

1 Compute the centroids

2 Update the partition

Caveats There can be many local optima. (depends on the initialization)

Many variants depend on the initialization :

Proposition (Arthur and Vassilvitskki('07))

K-means++ achieves a log(K) approximation of K-means criterion (in worst case).

16/36



Lloyd's algorithm Lloyd('82)

K-means as a least-square problem :
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Matrix Characterization of the Partnership matrix.

The n× n Partnership matrix

Bab =

{ 1
|Gk|

if a and b belong to the same Gk
0 else

Lemma (Peng & Wei(07))

The K-means minimizer Ĝ satis�es

B̂ ∈ arg min
B∈D
〈−XXT ,B〉 ,

D :=

B ∈ Rn×n :

• B < 0
•
∑
a Bab = 1, ∀b

• Bab > 0, ∀a, b
• Tr(B) = K
• B2 = B


Proof : B is a bistochastic matrix with K eigenvalues equal to 1.

Perron-Frobenius theorem  support of B= adjacency matrix of a graph with K cc
each block has rank 1 and is bistochastic.
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Relaxed K-means

Idea : drop the B2 = B condition.

1 Estimate B∗ using the semi-de�nite program (SDP)

B̂ = arg min
B∈C

〈−XXT ,B〉

where

C :=

B ∈ Rn×n :

• B < 0
•
∑
a Bab = 1, ∀b

• Bab > 0, ∀a, b
• Tr(B) = K


2 (Compute Ĝ by applying any clustering algorithm on B̂)

Remark :

Convex optimization but many constraints :
https://www.ams.jhu.edu/villar/research/ (n ≈ a few hundreds)
Iguchi et al.('15), Mixon et al.('17)

No information of the group sizes is needed.

Di�ers from the SDP relaxation of Max-Cut Problem Goeman and Williamson('95)
(see e.g. Hajek et al.('16)) where the size of the communities has to be known...

19/36

https://www.ams.jhu.edu/villar/research/


Relaxed K-means

Idea : drop the B2 = B condition.

1 Estimate B∗ using the semi-de�nite program (SDP)

B̂ = arg min
B∈C

〈−XXT ,B〉

where

C :=

B ∈ Rn×n :

• B < 0
•
∑
a Bab = 1, ∀b

• Bab > 0, ∀a, b
• Tr(B) = K
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Heuristic

E[XXT ] = AΘΘTAT
(

+E[EET ]
)

Lemma (e.g. Lei and Rinaldo('15))

Assume that ΘΘT has full rank.

Let AΘΘTAT =
K∑
k=1

dkuku
T
k and set U = [u1, . . . , uk] ∈ Rn×K . Then, there exist

Z1, . . . , ZK ∈ RK , such that

Ui: = Zk for all i ∈ Gk, and ‖Zk − Z`‖2 =
1

|Gk|
+

1

|G`|
.

U =


Zk(1)

Zk(2)

. . .
Zk(n)
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Spectral Clustering as relaxed K-means

Spectral Clustering

1 Compute the matrix Û made of the K-leading eigenvectors of XTX

2 Estimate Ĝ by distance clustering on the rows of Û.

(e.g. Apply an approximate K-means algorithm to the rows of the matrix Û)

Lemma (Peng & Wei(07))

Spectral Clustering is equivalent to

1 Estimate B∗ using the semi-de�nite program (SDP)

B = arg min
B∈C

〈−XXT ,B〉

C : =

{
B ∈ Rn×n :

• 1 < B < 0
• Tr(B) = K

}

2 (rounding) Compute Ĝ by distance clustering on the rows of B

=⇒ it amounts to dropping the constraints B1 = 1, Bab > 0 in the former relaxation
Proof : 1) B = ÛÛT

2) (ÛÛT )a: is some orthogonal transformation of Ûa:.
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2 (rounding) Compute Ĝ by distance clustering on the rows of B

=⇒ it amounts to dropping the constraints B1 = 1, Bab > 0 in the former relaxation

Proof : 1) B = ÛÛT
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2 Estimate Ĝ by distance clustering on the rows of Û.
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Partial recovery bounds

Proportion of misclustered points

err(Ĝ,G∗) = min
π∈SK

1

2n

K∑
k=1

∣∣∣G∗k4Ĝπ(k)

∣∣∣

Our goal

Prove that with high-probability, when s2 is large

prop. misclustered = err(Ĝ,G∗) ≤ e−cs
2

where s2 is an appropriate SNR.

Other related goals :

partial recovery : Find the minimal s2 such that err(Ĝ,G∗) is smaller than
random guess whp.

Almost full recovery : Find the minimal s2 such that err(Ĝ,G∗)→ 0

Perfect recovery : Find the minimal s2 such that err(Ĝ,G∗) = 0 whp.
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Clustering Gaussian mixtures

Mixture of Gaussian variables

X1, . . . , Xn ∈ Rp are independent with

Xa ∼ N (θk,Σ) a ∈ G∗k

many results discussed later readily extend to subGaussian random variables and to
di�erent covariances

Set ∆2 = min
j 6=k
‖θk − θj‖2, σ2 = ‖Σ‖op and RΣ =

‖Σ‖2F
‖Σ‖2op

,

Speci�c case of Isovolumetric spherical Gaussians

Σ = σ2Ip.
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What should we expect ? What is the correct SNR ?

Toy example : K = 2, |G∗1| = |G∗2| = n/2, Σ = σ2Ip, θ2 = −θ1.

Simpler Problem 1 (known parameters) : θ1 is known.

x

Bayes Classi�er achieves :

E[err(Ĝ,G∗)] = P[N (0, σ2) > ‖θ1‖] ≤ exp

[
−

∆2

8σ2

]
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Benchmark 2 : Supervised case

Parameter : θ1 is sampled uniformly on the sphere of radius ∆/2.
Supervised observations : L = (Xa, Za)a=1,...,n where Za ∈ {1, 2} is the label of
Xa and is sampled uniformly in {1, 2}

Objective : classify a new observation X.

Optimal Classi�er is achieved by LDA

ĥ(x) =

{
2 if P[Z = 2|X = x,L] > P[Z = 1|X = x,L]〉
1 if P[Z = 2|X = x,L] ≤ P[Z = 1|X = x,L]〉

ĥ(x) =
3

2
+

1

2
sign

(
〈

1

n

n∑
a=1

(2Za − 3)Xa, x〉
)
.

P[ĥ(X) 6= Z] = Eθ P
[
〈θ1 +

σ
√
n
ε, θ1 + σε′〉 < 0|θ

]
= P

[
∆2

4σ2
<

∆

2σ
(
ε1√
n

+ ε′1)−
1
√
n
〈ε, ε′〉

]

∼log

 exp
(
− ∆2

8σ2

)
if ∆2

σ2 �
[
1 ∨ p

n

]
exp

(
− n∆4

32pσ2

)
if [1 ∨

√
p
n

]� ∆2

σ2 �
p
n
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Proper minimax lower bound

Toy Model : K = 2, |G∗1| = |G∗2| = n/2, Σ = σ2Ip

Theorem (Ndaoud('18))

inf
Ĝ

sup
θ1,‖θ‖≥∆/2;G∗ balanced

Eθ,G∗
[
err(G∗; Ĝ)

]
& e
−c
(

∆2

σ2 ∧
n∆4

pσ4

)
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Signal To Noise Ratio

For more communities, de�ne the SNR

s2 =
∆2

σ2
∧
m∆4

RΣσ4
,

where

m denotes the size of the smallest cluster.

RΣ =
‖Σ‖2F
‖Σ‖2op

is the e�ective rank of Σ
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Recall the relaxed K-means SDP

relaxed K-means

Solve the SDP
B̂ ∈ argmin

B∈C
〈−XTX,B〉 ,

with

C :=

B ∈ Rn×n :

• B < 0
•
∑
a Bab = 1, ∀b

• Bab > 0, ∀a, b
• Tr(B) = K


Step 2 : Apply approximate K-medoid method Charikar et al.('02).

|ÂM̂− B̂|1 ≤ ρ min
A, Rows(M)⊂Rows(B̂)

|AM− B̂|1
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Partial recovery bounds for relaxed K-means

s2 =
∆2

σ2
∧
m∆4

RΣσ4
,

Theorem (Giraud and V. ('18))

If s2 & n/m, then P
[
err(Ĝ,G∗) > e−cs

2
]
. 1
n2 .

s2 & n/m= K is equivalent to ∆2 & σ2 n
m

(
1 ∨

√
RΣ
n

)
= σ2K

(
1 ∨

√
RΣ
n

)
.

Remarks :

1 Optimal convergence rate provided the SNR is large enough.

2 No restriction on the dimension

3 Ideas come from Fei and Chen('17) for SBMs. See also Mixon et al.('16), Fei
and Chen('18).

4 It does not recover the tight constant inside the exponential. This is possible in
speci�c situations ; see Fei and Chen('19) for SBM.

5 perfect recovery for s2 & log(n) ∨ (n/m) = log(n) ∨K
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err(Ĝ,G∗) > e−cs

2
]
. 1
n2 .

s2 & n/m= K is equivalent to ∆2 & σ2 n
m

(
1 ∨

√
RΣ
n

)
= σ2K

(
1 ∨

√
RΣ
n

)
.

Remarks :

1 Optimal convergence rate provided the SNR is large enough.

2 No restriction on the dimension

3 Ideas come from Fei and Chen('17) for SBMs. See also Mixon et al.('16), Fei
and Chen('18).

4 It does not recover the tight constant inside the exponential. This is possible in
speci�c situations ; see Fei and Chen('19) for SBM.

5 perfect recovery for s2 & log(n) ∨ (n/m) = log(n) ∨K

33/36



Partial recovery bounds for relaxed K-means

s2 =
∆2

σ2
∧
m∆4

RΣσ4
,

Theorem (Giraud and V. ('18))

If s2 & n/m, then P
[
err(Ĝ,G∗) > e−cs

2
]
. 1
n2 .

s2 & n/m= K is equivalent to ∆2 & σ2 n
m

(
1 ∨

√
RΣ
n

)
= σ2K

(
1 ∨

√
RΣ
n

)
.

Remarks :

1 Optimal convergence rate provided the SNR is large enough.

2 No restriction on the dimension

3 Ideas come from Fei and Chen('17) for SBMs. See also Mixon et al.('16), Fei
and Chen('18).

4 It does not recover the tight constant inside the exponential. This is possible in
speci�c situations ; see Fei and Chen('19) for SBM.

5 perfect recovery for s2 & log(n) ∨ (n/m) = log(n) ∨K

33/36



Partial recovery bounds for relaxed K-means

s2 =
∆2

σ2
∧
m∆4

RΣσ4
,

Theorem (Giraud and V. ('18))

If s2 & n/m, then P
[
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Large number K of clusters

Simpli�cation : balanced partition + Isovolumetric spherical Gaussians.

SNR condition s2 ≥ K is needed for Peng and Wei's SDP or for spectral
clustering.

From Regev and Vijayaraghavan('17), the condition s2 & log(K) is needed for
partial recovery to be information theoretically possible.

In low-dimensional settings (e.g. n�̃p3K2), Vempala and Wang('04) achieve
exact recovery if

s2 &
√
K log(n) + log(n) .

In high-dimension (p ≥ n), it is conjectured that no polynomial-time estimator
can beat the condition s2 & K � Banks et al.('18)

34/36



Large number K of clusters

Simpli�cation : balanced partition + Isovolumetric spherical Gaussians.

SNR condition s2 ≥ K is needed for Peng and Wei's SDP or for spectral
clustering.

From Regev and Vijayaraghavan('17), the condition s2 & log(K) is needed for
partial recovery to be information theoretically possible.

In low-dimensional settings (e.g. n�̃p3K2), Vempala and Wang('04) achieve
exact recovery if

s2 &
√
K log(n) + log(n) .

In high-dimension (p ≥ n), it is conjectured that no polynomial-time estimator
can beat the condition s2 & K � Banks et al.('18)

34/36



Large number K of clusters

Simpli�cation : balanced partition + Isovolumetric spherical Gaussians.

SNR condition s2 ≥ K is needed for Peng and Wei's SDP or for spectral
clustering.

From Regev and Vijayaraghavan('17), the condition s2 & log(K) is needed for
partial recovery to be information theoretically possible.

In low-dimensional settings (e.g. n�̃p3K2), Vempala and Wang('04) achieve
exact recovery if

s2 &
√
K log(n) + log(n) .

In high-dimension (p ≥ n), it is conjectured that no polynomial-time estimator
can beat the condition s2 & K � Banks et al.('18)

34/36



General covariance matrices

With a proper correction (see e.g. Bunea et al.('16)), general covariances
Σ1,. . . , ΣK can be handled by K-means and its relaxations.

. . . However, those methods do not build upon general covariances.

Optimal convergence rate with respect to the Mahalanobis distance
(µk − µl)TΣ−1(µk − µl)

 For unknown Σ, this is an active and challenging research direction
Dabis et al.('21)
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Summary

First Message

Various convex relaxations of K-means seem to work well. . .

Second Message

. . . for a variety of models. . . (SBM, GMM,. . . )

Third Message

Large K asymptotic is still not completely understood.

Danke für Ihre Aufmerksamkeit !
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